Question		on	answer		Guidance	
1	(a)		(Fast-moving) electrons hit a metal / an anode The kinetic energy of the electrons is transferred into X-rays / photons / EM waves	B1 B1	Allow: (X-rays are produced by large) deceleration of electrons	
	(b)		An X-ray photon interacts an electron (within the atom) The electron is ejected and the energy / frequency of the (scattered) photon is reduced	B1 B1	Allow: The electron is ejected and the wavelength of the (scattered) photon is increased	
	(c)	(i)	$I = I_0 e^{-\mu x}$ $I = 3.0 \times 10^9 \times e^{-(6.5 \times 1.7)}$ intensity = 4.8 × 10 ⁴ (W m ⁻²)	C1 C1 A0		
		(ii)	power of beam = $4.8 \times 10^4 \times 5.0 \times 10^{-6}$ (= 0.24 W) power absorbed by tumour = 0.24/10 = 0.024 (W) time = $200/0.024$ time = 8.3×10^3 (s)	C1 C1 A1	Possible ecf from (c)(i) Allow: 2 marks for 8.3×10^2 (s) if 10% is omitted Note: Using 5×10^4 (W m ⁻²) gives an answer of 8000 (s)	
	(d)		X-ray beam passes through the patient at different angles / X-ray tube rotates around the patient A thin fan-shaped beam is used (AW) Images of 'slices' through the patient (in one plane are produced with the help of computer software) X-ray tube / detectors are moved along (the patient for the next slice through the patient) Advantage: 3D image / better contrast between different (soft) tissues	B1 B1 B1 B1		
			Total	14		

Question	Answer	Marks	Guidance	
Z (a)	 Protons / nuclei have spin or they behave like (tiny) magnets Protons precess around the magnetic field (provided by the strong electromagnet) The frequency of precession is known as the <i>Larmor frequency</i> (Transmitting) coils provide (pulses of) radio waves (of frequency equal to the Larmor frequency) The protons absorb energy (from the radio waves) / resonate and enter into a high energy state (AW) When protons return back to their low energy state and they emit (photons of) radio waves Th <i>relaxation time</i> is the (average) time taken for the protons to return back to their normal / low energy state The relaxation time depends on the tissues (A computer processes all the signals from the receiving coils and with the help of computer software generates a 3D image) 	B1 × 6	Note: Atoms / particles Note: Must have reference to radio (waves) in 4 and 6 Allow 'excited' for 'high-energy state' Allow: Relaxing protons emit radio waves	
(b)	Disadvantage: Patient with metallic objects cannot be scanned / patient has to remain still (for a long time) / confined space / difficult for patient suffering from claustrophobia / or another suitable suggestion Advantage: Non-ionising /non invasive / better contrast (between soft tissues) / or another suitable suggestion	B1	Not '3 D image' because it is given in (a)	
	Total	8		

Question		Answers	Marks	Guidance	
3 (a)		Any two from: 1. Electrons are accelerated through high voltage 2. (High speed) electron(s) hit metal 3. <u>kinetic</u> energy of electron(s) 'produces' X-ray (photons)	B1×2	Allow: X-rays are produced by (large) deceleration of electrons	
(b)	(i)	Packet /quantum of (electromagnetic) energy	B1	Allow: 'particle of (electromagnetic) energy'	
	(ii)	$E = hc/\lambda$ and X-rays have shorter wavelength Or $E = hf$ and X-rays have higher frequency	B1		
(c)		(KE of electron =) $1.6 \times 10^{-19} \times 120 \times 10^{3}$ $eV = \frac{hc}{\lambda}$ $1.6 \times 10^{-19} \times 120 \times 10^{3} = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{\lambda}$ wavelength = 1.0×10^{-11} (m) or 1.04×10^{-11} (m)	C1 C1 A1	Allow : 2 marks for $1.0(4) \times 10^{-n}$ (m) (n \neq 11 - powers of ten error) Allow : 1×10^{-11} (m)	
(d)		Compton (scattering) Incoming photon collides with an electron, the electron is ejected and the photon is scattered / has lower energy Or Pair production Incoming photon (disappears and) produces electron-positron pair	M1 M1 A1	Must use ticks on Scoris to show where the marks are awarded Allow: (Simple) scatter(ing) M1 The photon is absorbed and re-emitted without change in energy/wavelength/frequency A1	
		Total	9		

Question		ion	Answers	Marks	Guidance
4	(a)		No entry into body / no cutting/incision of patient / no surgery Lower risk of infection / less trauma	B1 B1	
	(b)		Radioactive substance that is ingested / injected (into patient)	B1	
			Technetium(-99m) / Iodine(-131) / fluorine(-18)	B1	Not: barium
	(c)		Collimator – gamma (ray photons) travel along the axis of lead tubes or allows parallel gamma (ray photons travel to the scintillator)	B1	Must use ticks on Scoris to show where the marks are awarded
			Having thin / long / narrow (lead) tubes makes the image sharper / less blurred (QWC mark)	B1	
			Scintillator – gamma ray photon produces many/thousands of photons of (visible) light	B1	
			Photomultiplier - An electrical pulse is / electrons are produced from the light (photons)	B1	
			Computer – Signals (from photomultiplier tubes) are used to produce an image	B1	
	(d)	(i)	$v = f\lambda$		
	(-)	(-)	$1500 = 2.0 \times 10^6 \times \lambda$	C1	
			wavelength = 7.5×10^{-4} (m)	A1	
		(ii)	Ultrasound is reflected by (moving) blood (cells)	B1	Must use ticks on Scoris to show where the marks are awarded
			The frequency / wavelength (of ultrasound) is changed (AW)	B1	Not: Doppler effect mentioned
			The <u>change</u> of frequency is related to speed of blood / <u>change</u> of wavelength is related to speed of blood / ' Δ frequency \propto speed of blood'	B1	
			Total	14	